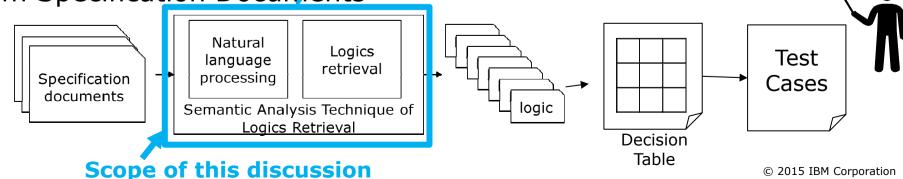
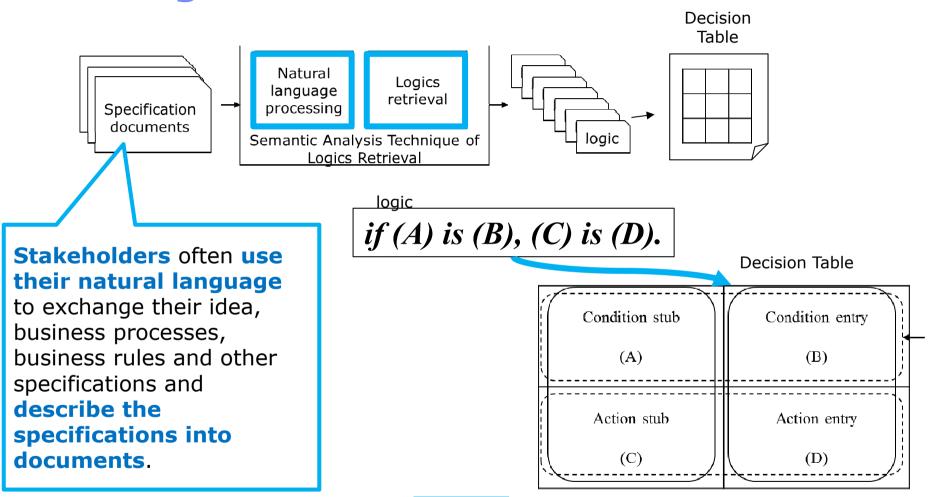

Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents

<u>Satoshi Masuda</u>, Futoshi Iwama, Nobuhiro Hosokawa, IBM Research – Tokyo Tohru Matsuodani, Debug Engineering Research Laboratory Kazuhiko Tsuda, University of Tsukuba

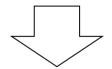

I. Introduction

-Create test cases from specification documents



-Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents

II. Background and Motivation

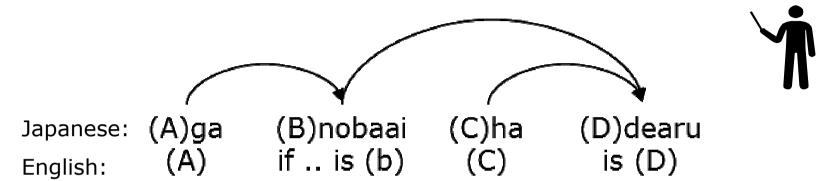

How to retrieve logics from specification documents?

Japanese 日本語

III. Related works

- Natural Language Processing
 - Many works have been already done, even in Japanese Language.
 - Morphological analysis
 - Structural analysis (Dependency analysis)
 - Semantic analysis etc...

We use the results of NLP techniques.



III. Related works

- Sneed2007 [2] presented testing against natural language requirements. The approach was to analyze requirements and extract test cases from them.
 - -The paper did not mention about techniques of natural language processing and the target language is English.
- Saeki1989 [11] presented software development process from natural language specification. That was an approach to solve problems about natural language specification by the process which was defined as "design" and "elaborate".
 - -The approach was not to try to automate by using techniques natural language processing.

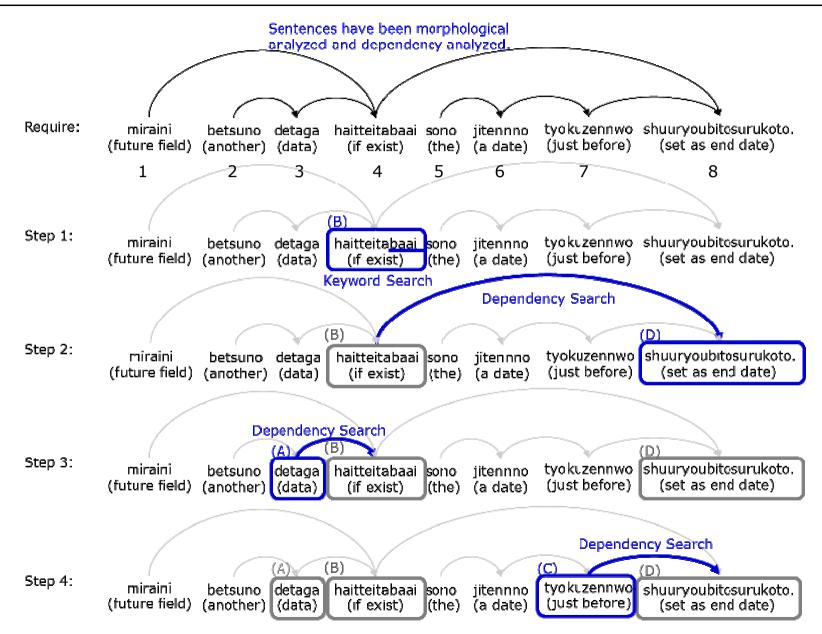
Logic retrieval

- Sample specification sentence
 - 1. Japanese:

"Miraini betsuno detaga haitteitabaai, sono jitennno tyokuzennwo shuuryoubitosurukoto."

2. English:

"If another data exists in a future field, set a date just before the data as end date."



Results of dependency analysis for the sample sentence

i	$P_m(i)$	$Dep_m(i)$	
1	miraini	4	
	(future field)		
2	betsuno	3	
	(another)	3	
3	detaga	4	
	(data)	4	
4	haitteita baai	8	
	(if exist)	Ŏ	
5	sono	6	
	(the)	0	
6	jitenno	7	
	(a date)	/	
7	tyokuzennwo	8	
	(just before)	8	
8	shuuryoubitosurukoto	T	
	(sets end date)	T	

IV. SEMANTIC ANALYSIS TECHNIQUE OF LOGICS RETRIEVAL

8

- Require: Sentences have been morphological analyzed and dependency parsed as Table I.
- Step 1: Search (B) words by keyword pattern matching. In this paper we set a rule that (B) Words have "baai" in Japanese which means "if" in English.
- Step 2: Search (D) words which (B) depend on.
- Step 3: Search nearest (C) word which depends on (D)
 - Nearest word has strongest dependency with the target word.
- Step 4: Search nearest (A) word which depend on (B)
 - –As same as step 3, nearest word has strongest dependency with the target word.

V. Experiments

We implemented the algorithm on Perl programs and made experiments

Algorithm 1 The analysis technique algorithm

```
Input: documents which have been morphological analyzed and dependency partial
 1: for each D_m do
                                                                                         for each D_{\infty}
 2: for all P_m(i) do
       if P_m(i) = K1 then
        CEi = i
 4:
                                                                                         FI(K,P_m(i))
 5:
      P_m(i) = CE
       if Pm(Dep_m(i)) \subseteq D_m and P_m(Dep_m(i)) \subseteq T then
     AEi = i
 8: P_m(Dep_m(i)) = AE
                                                                                          DE(CE,
 9:
            else next D_m
                                                                                           P_m(i)
10:
          end next D_m
11:
      end for
      for all P_m(i) do
                                                                                          NDA(AE,
       if Dep_m(i) = CEi and max(i) then
13:
                                                                                           P_m(i)
14:
     P_m(Dep_m(i)) = AS
15:
       else next D_m
16:
        if Dep_m(i) = AEi and max(i) then
                                                                                         NDC(CE,
17:
        P_m(Dep_m(i)) = CS
18:
        else next D_m
      end for
19:
20: end for
                                                                                       Logic Retrieval
```

V. Experiments

Specification documents in Japanese

Doc	Characters		File Size		
Groups	Pages	(Double Bytes)	(Bytes)	Create date	
A	93	74,559	1,702,400	2010/09/16	
A	17	3,283	4,555,776	2014/03/18	
A	14	9,502	60,416	2008/06/01	
A	15	11,182	51,712	2014/07/01	
A	76	63,908	1,008,129	2003/03/01	
В	10	6,825	50,688	2014/06/01	
В	2	779	97,280	2007/11/14	
В	22	14,560	499,712	2008/04/01	
В	17	11,211	54,272	2006/09/01	
В	19	6,844	79,360	2010/05/01	
В	9	7,844	140,800	2014/01/01	
С	157	152,568	1,995,521	2012/11/01	
С	56	55,738	609,407	2005/07/01	
С	73	70,167	2,775,933	2011/07/06	
D	11	9,060	37,888	2012/04/01	
D	41	38,527	653,312	2012/04/01	
D	327	296,451	6,210,032	2012/04/01	
Е	25	20,364	880,640	2009/12/02	
Е	8	6,717	77,312	2012/04/01	
Е	7	9,852	313,871	2014/04/01	
Е	10	8,035	72,192	2013/05/01	
F	10	4,419	90,624	2011/10/01	
F	8	5,012	10,223	2013/04/01	
F	173	188,919	1,172,389	2007/04/01	
F	18	26,466	618,214	2013/04/01	

V. Experiments

TABLE IV. RESULTS THE ANALYSIS TECHNIQUE VS. EVALUATION

The analysis technique	Positive		Negative		
Evaluations	Positive (a)	Negative (b)	Positive (c)	Negative (d)	
A	31	1	15	2	
В	15	1	4	3	
C	43	2	17	4	
D	62	5	33	21	
Е	35	1	19	6	
F	107	8	40	26	

TABLE V. RESULTS OF RECALL AND PRECISION

	Document Groups					
	\boldsymbol{A}	В	C	D	\boldsymbol{E}	$\boldsymbol{\mathit{F}}$
Precision	0.97	0.94	0.96	0.93	0.97	0.93
Recall	0.67	0.79	0.72	0.65	0.65	0.73

VI. Conclusion

- We proposed the analysis technique, a semantic analysis technique of logics retrieval for software testing from Japanese public sector's specification documents.
- The result was that the precision reached 0.93 to 0.97 and recall reached 0.65 to 0.79.
- We confirmed the analysis technique could retrieve logics from Japanese natural language specification documents.
- This result is the starting point to research about harmonization between natural language processing and software testing.

References

- 1. Japan Industry Standard Association, "JIS X 0125-1986 Decision Table", in Japan Industry Standards, 1986
- 2. H. M. Sneed, "Testing against natural language requirements", in IEEEQuality Software, 2007. QSIC'07. Seventh International Conference on, 2007, pp.380-387
- 3. K. Tsuda, and M. Nakamura, "The extraction method of the word meaning class", in IEEE Knowledge-Based Intelligent Information Engineering Systems, 1999. Third International Conference, 1999, pp.534-537
- 4. T. Matsodani, "Application of Decision Table to Software Logic with Designing and Testing", in Reliability Enginerring Association of Japan, 2012, pp.397-404
- 5. K. Uetsuki, T. Matsuodani, and K. Tsuda, "An efficient software testing method by decision table verification", in International Journal of Computer Applications in Technology, 2013, pp.54-64
- 6. S. Kishimoto, "Government procurement system and IT system -Who the raised or IT general constructor", in http://www.rieti.go.jp/jp/projects/denshi/04.pdf, 2003, pp.37-47
- 7. I. C. S. S. E. S. Committee, and I.-S. S. Board, "IEEE Recommended Practice for Software Requirements Specifications", in Institute of Electrical and Electronics Engineers, 1998
- 8. N. Fukui, "Deriving the differences between English and Japanese ", in English Linguistics, 1988, pp.249-270
- 9. C. Kim, S.-M. Kim, and K.-W. Song, "Measurement of Level of Quality Control Activities in Software Development [Quality Control Scorecards]", in IEEEConvergence and Hybrid Information Technology, 2008. ICHIT'08. International Conference on, 2008, pp.763-770

- 10. S. KUNO, "The structure of the Japanese language", in Cambridge, MA:MIT Press., 1973
- 11. M. Saeki, H. Horai, and H. Enomoto, "Software development process from natural language specification", in ACMProceedings of the 11th international conference on Software engineering, 1989, pp.64-73
- 12. A. Shhimazu, "Legal Engineering: Methodology for Designing Trustworthy Social Systems -Legal Document Analysis-", in IEICE Foundamentals Review, 2012, pp.320-328
- 13. T. Kudo and Y. Matsumoto, "Japanese Dependency Analysis Using Cascaded Chunking", in Journal of Information Processing Society of Japan, 2002, pp.1834-1842
- 14. Y. Kimura, M. Nakamura, A. Shimazu, "Trasnformation logical expression from legal documents which have listing and references", in Assocaiton for natural Language Processing, 2008, pp.612-615
- 15. Y. Tang, and R. Meersman,"On constructing semantic decision tables", in SpringerDatabase and Expert Systems Applications, 2007, pp. 34-44
- 16. K. Tanaka, I. Kawazoe and H. Narita, "Standard structure of legal provisions For the leagal knowledge processing by natural language -", in Information Processing Society of Japan Natural Language Processing, 1993, pp.79-86
- 17. T. Katayama, "Legal engineering-an engineering approach to laws in e-society age", in Proc. of the 1st Intl. Workshop on JURISIN, 2007
- 18. S. Masuda, T. Matsuodani, and K. Tsuda, "A Method of Creating Testing Pattern for Pair-wise Method by Using Knowledge of Parameter Values", in Procedia Computer Science, 2013, pp. 521-528

14

The end of presentation